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Abstract—Shared memory heterogeneous systems are now
mainstream, with nearly every mobile phone and tablet contain-
ing integrated processing units. However, developing applications
for such devices is difficult as workloads must be decomposed
across different processing units, and the decomposition must
be flexible to account for the growing diversity of devices, each
with different relative processing unit throughput. Furthermore,
many devices require distinct programming front ends, requiring
significant effort to write cross-platform applications.

In this work, we identify a pragmatic class of applications,
which we call traverse-compute applications, that are ideal for
shared memory heterogeneous systems. These applications have
a flexible heterogeneous decomposition where CPUs excel at
traversing a tree structure, while accelerators excel at node
computations. Leveraging this insight, we present Redwood: a
framework for writing heterogeneous traverse-compute work-
loads. Redwood provides a simple processing unit abstraction
and a tree traversal library that enables heterogeneous opti-
mizations. Using Redwood, we implement Grove, a benchmark
suite containing nine pragmatic tree traversal applications, e.g.,
k-nearest neighbors. We instantiate Redwood for three different
heterogeneous programming platforms: CUDA, SYCL, and High-
Level Synthesis; we use Grove to evaluate five shared memory
heterogeneous systems. Our evaluation highlights the impor-
tance of flexible heterogeneous decomposition as the optimal
parameters differ widely across platforms and applications.
However, once optimally configured, heterogeneous implemen-
tations can provide up to 13.53× speedups (geomean of 3.01×)
over homogeneous implementations, showcasing the potential of
heterogeneous computing for these workloads.

Index Terms—Heterogeneous Computing, Benchmarks, FP-
GAs, GPUs, Tree Traversals

I. INTRODUCTION

As Moore’s Law and Dennard’s scaling come to an end, the
demand for ever-increasing performance and energy efficiency
has driven the development of Shared-Memory Heterogeneous
Systems (SMHSs), particularly in mobile System-on-Chips
(SoCs), e.g., an Apple A12 SoC has over 80% of the die
area consisting of accelerators [45]. SMHSs incorporate di-
verse specialized processing units (PUs), including traditional
CPUs and Programmable Accelerating PUs (PAPUs), such
as integrated GPUs and embedded FPGAs, all interconnected
through a shared-memory hierarchy on the same chip. In
contrast to conventional accelerator-oriented heterogeneous
systems (e.g., [23], [41]), SMHSs architecture enables efficient
communication and data sharing between different PUs, com-
pared to discrete heterogeneous systems where data is typically
transferred via PCIe, as studied in [12], [19], [33].

In recent years, there has been a growing trend in academia
to explore SMHSs, as shown by the increasing number of
studies focusing on the integration of accelerators and their
interactions with a shared memory hierarchy in SoC de-
signs [22], [27]. Moreover, in [13], [30], [60], these studies
have shown that shared memory is a key factor in improving
Heterogeneous SoCs’ performance and energy efficiency.

Apart from academic explorations, there are many deployed
SMHSs, largely on mobile devices, such as phones and tablets.
Many different vendors produce these devices, e.g. Apple,
Qualcomm, and ARM, each of which contains vendor-specific
PAPU architectures. This diversity necessitates the need for
benchmarks to evaluate and compare the efficiency of these
SMHSs. However, SMHSs remain difficult to target with
workloads that can efficiently utilize their different PUs.

In this work, we identify a pragmatic class of workloads,
which we call traverse-compute, that are ideal for SMHSs.
These workloads aim to harness the capabilities of various PUs
in SMHSs effectively, enabling comprehensive performance
evaluation and comparison across different SoC designs.

A. Heterogeneous Traverse-Compute Workloads

Trees are a fundamental data structure and form the foun-
dation for many useful workloads [18]. A tree traversal is
characterized by irregular memory accesses, as nodes can be
scattered across the memory. Many tree-based workloads com-
bine tree traversal with some computation, largely occurring
when leaf nodes are visited. We call such workloads traverse-
compute workloads, which can often be found in statistical
learning [14], and particle simulations [5].

Traverse-compute workloads utilize spatial partitioning trees
like k-d trees [3], allowing a point cloud to be efficiently
searched in O(log(n)) instead of O(n). An example of
traverse-compute workload is nearest-neighbor (NN); its
applications include facial recognition on surveillance cam-
eras [39], object detection in robotics [35], and anomaly
detection in portable monitoring systems [50]. These tree-
based approaches offer an attractive energy-compute trade-off,
making them a suitable alternative to DNN-based approaches
for resource-constrained devices [40], [57], where SMHSs are
often employed.

These workloads have been well-studied and can be found in
other benchmarks: e.g., Splash3 [43] and [6] includes Barnes-
Hut algorithms; Hetero-Mark [51] includes k nearst-neighbor.
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Fig. 1. (a-d) Execution timelines for different heterogeneous workload
paradigms. Blue/Green shading represents tasks, decomposed from the orig-
inal algorithm (Grey), that are best suited to CPU/PAPU, respectively.
Redwood combines flexible task scheduling, specialized decomposition, and
efficient communication between PUs, as illustrated in (e).

However, the traverse-compute abstraction boundary has not
been exploited in the way that we are proposing.

B. Heterogeneous Computing Paradigms

While there are many works on heterogeneous computing,
e.g., see [33], we believe that several factors make this work-
load, along with our corresponding programming framework
and benchmark suite, unique. We start by discussing four
common heterogeneous computing paradigms, illustrated in
Figure 1, and show how traverse-compute workloads have a
flexible and specialized mapping to SMHSs.

a) Accelerator-oriented: In many discrete, accelerator-
oriented systems, the trend is to offload most computation
to the accelerator, as shown in Fig. 1-a. This approach can
result in an underutilized CPU, especially in a SMHS, where
different PUs share a more or equal portion of the system
resources, e.g., as is the case on many smartphone SoCs [45].
Thus, to utilize the entire system, tasks should be decomposed
so that the workload is distributed across PUs.

b) Flexible Task Scheduling: Other frameworks have task
schedulers that assign similar tasks across both the CPU and
GPU, such as work stealing in [10]; this is shown in Fig. 1-
b, where both PUs are occupied. Furthermore, due to task
granularity and dynamic task management, these heteroge-
neous frameworks can adapt to different PAPU throughputs.
Using Nvidia’s SMHS Jetson chips as an example, the Xavier
reports 1.7 GPU TFLOPs, while the Orin reports 5.3 GPU
TFLOPs [38]. Given these differences, a portable heteroge-
neous workload requires a flexible decomposition, i.e., so that
the workload executing on the Orin can be configured to have
more work mapped to the GPU and the workload configured
to the Xavier will have less work mapped to the GPU.

c) Specialized Heterogeneous Decomposition: In the
above approach, identical tasks are mapped to different PUs,
which may result in inefficient use of the available resources;
because different PUs may have different strengths and weak-

nesses, e.g., CPUs excel at sequential computation with un-
predictable control flow operations, while GPUs are optimized
for data-parallel operations. In an ideal decomposition, each
PU will perform tasks that are best suited for its unique
architectural strength. As illustrated in Fig. 1-c, one maybe
extract components from the original task (grey) into parts that
are most suited for PAPU (green) and CPU (blue). However,
the downside is that not all tasks can be decomposed in a
balanced manner: For example, as shown in the figure, it may
be the case that only a small fraction of the task contains
components that are well suited to GPU. This can lead to an
underutilized PAPU.

d) Flexible & Specialized: To achieve an efficient hetero-
geneous implementation in SMHSs, a balance between flexible
and specialized decomposition is needed (Fig. 1-d,e). In both
of these cases, the CPU and PAPU are fully utilized with tasks
that are suited to their architectural strength. Furthermore, in a
SMHS (Fig. 1-e), the shared memory hierarchy can be used to
reduce data movement between PUs, improving performance
and efficiency. This allows even finer-grained tasks to be
offloaded from the CPU to the PAPU. However, programming
a workload with flexible and specialized decomposition on
SMHSs can be challenging, as communication and synchro-
nization between PUs must be carefully managed. In this
work, we provide an API and runtime that can be used to
efficiently implement flexible and specialized heterogeneous
traverse-compute workloads.

C. Challenges in Programmability

As a more practical concern, due to the diversity of SMHSs,
many devices support a limited set of programming frontends.
For example, CUDA can only be executed on Nvidia devices,
SYCL has the most support on Intel devices, and FPGAs are
most easily programmed through High-level Synthesis (HLS).
Although portability is often advertised, it can be difficult in
practice, as shown in OpenCL [49]. Given this, it is difficult
for workloads to target cross-vendor SMHSs.

D. Mapping Traverse-Compute Workloads to a SMHS

Traverse-compute workloads have a natural heterogeneous
decomposition (as in Fig. 1-e), and a simple programming
interface, as follows:

• Flexible Scheduling: Trees can be configured such that
the partitioning stops at different levels; all points that
have not been partitioned can be assigned to a leaf node.
A shallow tree will have many un-partitioned points, i.e.,
heavier compute tasks for the PAPU and fewer traversal
steps for the CPU. A deep tree will be the opposite. The
tree can easily be reconfigured to adapt to SMHSs that
have different relative throughputs between PUs.

• Specialized Heterogeneous Decomposition: Tree work-
loads can be decomposed such that the CPU traverses the
tree, utilizing architecture components such as load-store
queues to tolerate long-latency memory accesses; while
the PAPU performs the node computation, utilizing the
high architectural parallelism.
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Fig. 2. The flow of Redwood: (left) User uses Redwood APIs to implement traverse-compute workloads. (middle) The workload can be easily configured to
target SMHSs with different relative throughputs between CPU and PAPU. (right) Workload now can be used to evaluate different SMHSs.

• Simple Abstraction Boundaries: and can utilize com-
mon accelerator routines. The core accelerator func-
tion is a reduction, which has been widely studied for
programmable accelerators [17]. Thus, traverse-compute
applications require only a simple interface to target a
wide range of SMHSs.

E. Redwood and Grove

While the above insights are conceptually sound, they
require significant effort to implement in a modular and
efficient way. To this end, we present Redwood: a framework
for writing heterogeneous traverse-compute workloads for
SMHSs. Redwood has three components:

1) Backend: provides a simple abstraction over PAPUs and
can be instantiated to target different platforms.

2) Data structures: spatial tree structures that have a con-
figurable height.

3) Traverse-compute API: an interface for leaf node com-
putations that hides heterogeneous optimizations.

We show how Redwood can be used to develop heteroge-
neous traverse-compute workloads by implementing Grove:
a benchmark suite of nine tree traversal applications. Each
benchmark contains distinct characteristics in terms of tree
traversal patterns and node computations. Grove contains
important workloads such as k-nearest neighbors (KNN), a
widely used supervised learning workload. Grove also contains
Barnes-Hut (BH), a common HPC application for particle
simulation with additional applications in learning [54].

We highlight the programmability of Redwood by im-
plementing the backend for CUDA, SYCL, and high-level
synthesis (HLS). We then use Grove to evaluate five SMHSs:
two Nvidia Jetson devices, two Intel CPU/GPU processors,
and one tightly integrated CPU/FPGA device. These systems
all have different performance profiles across their respective
PUs, and Grove can be used to highlight the importance of the
flexible heterogeneous decomposition and a simple backend.
We identify key heterogeneous performance characteristics
of each platform, including their optimal CPU/PAPU load
balance and task granularity. We show that tree traversals
have the potential to benefit significantly from heterogeneous
computation, with tuned heterogeneous implementations out-

performing their homogeneous counterparts by up to 13.53×,
with a geomean of 3.01×.

Figure 2 shows an overview of our contribution: Redwood is
used to implement a traverse-compute workload. The workload
can then be configured to be either a shallow or deep tree de-
pending on the relative throughput of the PUs. The application
can then be executed across different SMHSs (depending on
the availability of a backend). In the figure, we highlight the
NN application on an Nvidia Jetson device (executing on the
CUDA backend), which has a higher PAPU throughput, and
an Intel i7-9700K (executing on the SYCL backend), which
has a lower PAPU throughput.

Contributions: In summary, our contributions are:
• The classification of traverse-compute workloads, which

have a flexible heterogeneous decomposition (Sec. II-A).
• Redwood: a framework for developing heterogeneous

traverse-compute workloads (Sec. III).
• Grove: a suite of 9 traverse-compute workloads (Sec. IV).
• An evaluation of Grove across five SMHSs, identifying

key performance characteristics (Sec. VI).
We aim to make it easier for researchers and developers to

analyze and design SMHS, by open-sourcing Redwood and
Grove at https://github.com/xuyanwen2012/redwood-rt.

II. BACKGROUND

A. Spatial Partitioning Trees

As mentioned in Sec. I-A, trees can be used for a structured
representation of a point cloud [3], [31]. In such cases, these
trees are called Spatial Partitioning Trees (SPT). A point
cloud is a set of points P in N-dimensional space. Each point
consists of a coordinate vector v⃗ and potentially some data,
e.g., its mass.

A SPT will structure P in the following way: each node
represents either: (1) a disjoint set of particles P ′ ⊂ P , or
(2) a bounding box b. The root node is a bounding box around
all particles. The space is then partitioned into sub-bounding
boxes. These sub-bounding boxes are assigned to the children
of the root node. This process continues recursively until the
sub-bounding box contains a small (but configurable) number
of particles. These particles then get set as the data for a leaf
node, and the recursion terminates.



A k-d tree subdivides the bounding box using by creating a
splitting plane through one of the axes. A quadtree, or octree,
is limited to R2 and R3, respectively. These trees subdivide
their bounding box into four or eight equally sized subspaces.
A k-d tree is guaranteed to have at most logarithmic depth,
while an octree is easier to be modified dynamically, e.g.,
particles can be easily reorganized when they move out of
their bounding box in particle simulations.

a) Formalizing Traverse-Compute Workloads: Traverse-
compute workloads can be formalized as such: Given two
point clouds P and Q, create a spatial tree for Q, and call
it T (Q). For each p ∈ P , a traverse-compute routine, call it
tr, is performed on T (Q). The tr operation starts at the root
of T (Q) and traverses the tree. At each node, n ∈ T (Q), some
computation is performed on the node data to determine the
traversal path. When the traversal reaches a leaf node l, all par-
ticles w ∈ l are computed. This computation consists of: (1) a
distance computation between p.v⃗ and w.v⃗, giving a distance
d; (2) an interaction computation based on p.data, w.data and
d, giving a value i; and (3) a computation across the i values,
e.g., a reduction. After a leaf node visit, the traversal returns
to the parent to make the next traversal decision. Traversals
that depend on leaf node computations are said to be guided,
while traversals that do not depend on leaf node computations
are said to be unguided [18]. Section IV shows examples of
nine traverse-compute workloads, which utilize a variety of
trees, distance metrics, and traversal patterns.

B. Shared Memory Heterogeneous Systems

The focus of this work is integrated, shared memory het-
erogeneous systems (SMHSs), also known as Unified Memory
Architectures (UMA); these systems are composed of several
PUs, where all PUs (e.g., CPUs and GPUs) have access to
the same main memory region. In some cases, the different
PUs even have coherent caches [27]. Thus, communication
between PUs is more efficient than communication in tradi-
tional discrete accelerator systems, i.e., communication does
not require expensive data transfers across PCIe.

One popular CPU-GPU implementation of SMHSs is
NVIDIA’s Tegra SoC. In Tegra, both the CPU (host) and
an integrated GPU (device) share the same DRAM memory
on the SoC. This is in contrast to traditional discrete GPU
systems, which have a separate main memory for the GPU.
In this paper, we refer to Unified Shared Memory (USM) as
a memory region that is allocated in the same physical SoC
main memory. In the case of Tegra, the device memory, host
memory, and unified memory are all allocated on the same
physical SoC DRAM.

The PAPUs we consider are integrated GPUs and FPGAs;
we now overview each PU, including its architectural strengths
and its programming platforms.

a) CPUs: CPUs are often the foundation of a computer
system. Their design is optimized for sequential, unpredictable
workloads. For example, they contain complex hardware com-
ponents, such as reorder buffers and load-store queues, so that
other instructions can be executed while memory requests are

buffered. This architectural complexity allows CPUs to excel
at workloads with irregular memory accesses. For example,
some sparse computations have shown CPUs to outperform
their GPU counterparts, e.g., by up to 3.5× [8]. However,
CPUs have limited computation throughput.

b) GPUs: While GPUs began as graphics accelera-
tors, due to general-purpose GPU (GPGPU) programming
frameworks, they have now been applied to more general-
purpose workloads (see [44, ch. 1.5] for an overview). GPU
architectures are designed for parallel workloads and have
high computational throughput. They contain several stream-
ing multiprocessors (SMs), each of which has many small
cores that execute instructions in a SIMT (single-instruction,
multiple threads) manner. GPU cores work best when memory
accesses are contiguous, as they share load/store units that
coalesce memory requests. For example, [55] shows that fully
connected DNNs, containing large matrix multiplications are
10-100× faster on a GPU system than on a CPU system.
However, the shared load/store units on GPUs are unable to
efficiently service irregular memory accesses; and divergent
control flow across threads will cause sequentialized execution
under the SIMT execution model.

c) FPGAs: Field-Programmable Gate Arrays (FPGA) are
increasingly being integrated into SoCs due to their gate-level
emulation capability which enables post-silicon hardware spe-
cialization. Unlike CPUs and GPUs which are time-multiplex
generic ALUs with sequentially-executed instructions, FPGA-
accelerated datapaths are spatially mapped onto the reconfig-
urable fabric. As a result, although FPGA-emulated accelera-
tors rarely achieve the same amount of data-level parallelism
as GPUs, they are capable of exploiting pipeline parallelism.
For example, it has been shown that for some computer vision
tasks, FPGAs can outperform CPUs by up to 22.3× and GPUs
by up to 3.0× in terms of energy per frame [42].

III. REDWOOD: A FRAMEWORK FOR DEVELOPING
HETEROGENEOUS TRAVERSE-COMPUTE WORKLOADS

We now present Redwood: a framework for developing
heterogeneous traverse-compute workloads. The core insight
is that the traversal can be performed on the CPU while the
leaf node computations can be performed on the PAPU.

Redwood is made up of three components: (1) a back-
end, which can be instantiated for different heterogeneous
programming platforms; (2) tree data structures, which have
a configurable height; and (3) a leaf node computation API
and runtime that allows heterogeneous computation, even
on workloads where traversals are dependent on leaf node
computations.

A. Redwood Backend

The Redwood backend abstracts several common features
in heterogeneous programming platforms, and thus, we argue
can easily be instantiated. We highlight this in Sec. III-A by
discussing implementations for three programming platforms:
CUDA, SYCL, and HLS. The different abstractions are:



a) Unified Shared Memory (USM): This memory al-
lows data to be accessed both on the CPU and PAPU in a
SMHS requiring no copying. Redwood requires only a simple
Redwood_malloc and Redwood_free which returns a
pointer to a USM memory region.

b) Accelerator Work Queue (AWQ): Redwood requires
an AWQ to launch a PAPU kernel. To enable heterogeneous
computing, the kernel launch must be asynchronous, so that
the CPU can perform tree traversal tasks while the accelerator
is performing compute tasks. To provide this, Redwood pro-
vides an Redwood_AWQ object which can launch a task,
and sync a task that was previously launched.

c) Compute Routines: Redwood is built on a small
number of common PAPU compute routines:
• distance metrics: because traverse-compute workloads can

utilize different distance metrics, the Redwood backend
requires a PAPU distance computation routine to compute
the distance between two points. These routines are typically
very simple, consisting only of a few lines of arithmetic.

• interaction computation: some workloads require an in-
teraction in addition to the distance, e.g., for particle sim-
ulations. Again, these routines are typically only a few
arithmetic instructions.

• reduction: this routine performs a reduction across an array
of values, using a configurable binary operator. Reductions
have been widely studied for PAPUs [17] and optimized
implementations are often available in libraries.

• sort: some traverse-compute workloads (e.g., KNN) can
be implemented using sorting. This can be mapped to the
PAPU if an efficient implementation is available. Much like
reduction, sorting has been widely studied for PAPUs, e.g.,
GPUs [48] and FPGAs [61].

• batched reduction: this routine is simply a reduction ap-
plied over a batch of arrays. It is useful when a single
reduction is too lightweight to justify the overhead of a
PAPU kernel launch.

B. Redwood Data Structures

Redwood provides three tree structures that can be used as
the basis of the traverse-compute workloads. Each tree takes
in a point cloud to partition, along with a configurable set
of data to store for each node. The trees provide a common
API, such as the ability to retrieve the root node and query
the children from a node. Redwood provides a k-d tree, which
is the most general spatial decomposition tree. It can structure
point clouds in arbitrary dimensions. Redwood also contains
quadtrees and octrees, which are restricted to point clouds
in R3 and R2, respectively. Leaf node data is allocated in
USM (allocated using the Redwood backend) so that the PAPU
can easily access the memory without requiring any explicit
copies. If a bounding box has fewer particles than the leaf
node is configured with, then dummy particles are stored, with
a special data value as an identifier.

a) Flexible Heterogeneous Decomposition: Redwood
trees are parameterized by a leaf node size. This is important
so that Redwood applications can be efficiently executed
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Fig. 3. Traverser execution timeline: At each time stamp, the CPU traversal
trace is highlighted with a solid colored line. The leaf node that is being
processed by the PAPU is shaded in grey. The dotted color lines are traversals
that are suspended and will be resumed later.

across a wide range of SMHSs that may have different relative
PU throughputs. For example, systems that have less relative
PAPU throughput can configure the tree to have smaller leaf
node sizes, as this will require less leaf node computation
(performed on the PAPU) and more tree traversals (performed
by the CPU). We show that different SMHSs and different ap-
plications have different optimal leaf node sizes in Sec. VI-A.

We note that there is a computational trade-off space when
increasing leaf node size. Spatial partitioning trees essentially
prune the computation space. Shallow trees have less pruning,
and thus will require extra computations. For example, Fig. 2
shows the shallow tree as having 9 point computations, with
the deeper tree having only 4. However, as our results will
show (Sec. VI), this extra computation can result in significant
end-to-end performance increases as PAPUs are extremely
efficient at the required computation, and irregular memory
accesses in tree structures have significant overhead.

C. Node Computation API and Traversers

Recall that a traverse-compute workload has query points
P and a tree T (Q). A query point p ∈ P starts at the
root of T (Q) and traverses the tree. When the traversal
reaches a leaf node, the node computation could be exe-
cuted immediately. However, to enable heterogeneous op-
timizations, Redwood provides an asynchronous API pair:
Compute_leaf_node_start and Leaf_nodes_sync.
The first call takes in three arguments: an Redwood_AWQ,
the query point, and a leaf node; it registers a leaf node
computation with Redwood. The second API call takes a
Redwood_AWQ as an argument and waits until all leaf node
computations on the AWQ are finished. This allows the CPU
to continue traversing the tree while the PAPU executes the
leaf node computation. In an unguided traversal, the CPU
can simply call compute_leaf_node_start on each leaf
node as they are visited, only calling leaf_nodes_sync at
the end of all the query points.

a) Traversers: For a guided traversal, i.e., the traversal
is dependent on the leaf node computations, the asynchronous
leaf node computation calls are not sufficient to enable the
CPU and PAPU to execute in parallel. This is because the



traversal must wait for the leaf node computation before it can
continue. To address this, we developed traversers: lightweight
co-routines that encode a query point and its traversal state. A
traverser can suspend and resume its traversal at leaf nodes.

Figure 3 shows how traversers can enable heterogeneous
computation: a traverse-compute workload can start the traver-
sal for query point p using traverser t (shown in yellow); this
traversal can then start a leaf node computation (node A) and
then suspend t. Another traverser t′ on query point p′ can then
start (shown in blue). This independent traversal can traverse to
a leaf node (labeled C) and register the leaf node computation.
At that point, t′ can suspend its traversal, and t can resume.
At this point, t’s leaf node computation may be finished,
so t can continue its traversal. The timeline shows how this
enables the CPU and PAPU to execute in parallel. Traversers
are implemented using a lightweight data structure to record
the query point and a pointer to its recursive traversal stack.
Suspending a traverser returns the traverser object from the
traverse-compute routine. The traverse-compute routine can
be restarted with a traverser object. In our experiments, we
found our traverser implementation to have roughly 2× less
overhead than C++ co-routines.

b) Batching Computations: Leaf node computations may
be small, and as such, the computation might not contain
sufficient parallelism to fully utilize the PAPU; additionally,
on some platforms, the overhead of launching a kernel may be
prohibitive for small workloads (discussed in Sec. VI-C). To
address these issues, we implement batched computations in
Redwood. When a call to compute_leaf_node_start is
executed, Redwood does not immediately start executing the
node computation. Instead, it batches a configurable number
of leaf nodes in USM. Redwood also implements ping-pong
buffering; once one buffer is filled, the PAPU kernel is
launched and a second buffer starts to be populated. When a
batch is full, one PAPU kernel is launched to compute all the
leaf nodes. This optimization takes advantage of the batched
reduction computation required in the backend.

As an additional optimization, Redwood will detect if more
than one leaf node is registered with the same query point
(which is the usual case for unguided traversals). In these
cases, the reductions can be merged into a larger reduction,
which is more efficient than many small reductions.

IV. GROVE: BENCHMARKS

Using Redwood, we implement a set of traverse-compute
workloads called Grove, summarized in Tab. I, which have
applications in scientific computing (particle simulation) and
supervised learning (KNN). We categorize our benchmarks
into three high-level algorithms, which are then instantiated
with different node computations.

A. Grove Algorithms

a) Nearest Neighbor (NN): Given two point clouds P
and Q, for each p ∈ P , NN finds its closest neighbor q ∈ Q.
This algorithm iteratively performs a traverse-compute routine
on T (Q) for each p ∈ P . Given a leaf node L, the leaf

TABLE I
SUMMARY OF GROVE: OUR TRAVERSE-REDUCE BENCHMARK SUITE

IMPLEMENTED WITH REDWOOD

Alg. Input Distance/Interaction Array Analysis Tree

BH R3
Euclidean + Gravity

reduction sum octreeEuclidean + Gaussian
Euclidean + TopHat
Euclidean
ManhattanNN R4

Chebyshev
reduction min kd-tree

KNN R4
Euclidean

sort min kd-treeManhattan
Chebyshev

node computation consists of computing the distance from p
to every point l ∈ L and performs a min reduction over the
distances. The traversal then pops up the tree and determines
if more leaf nodes need to be searched. Because of this
dependency, this algorithm has a guided traversal. Thus, a
configurable number of traversers are used to execute different
points from P . In Grove, we implement NN using a k-d tree
and experiment with particles in R4.

b) k-Nearest Neighbor (KNN): A natural extension to
NN is KNN, which finds the k nearest neighbors. Instead
of performing a reduction over the distances, the best k
neighbors are appended to the leaf node points and sorted.
The first k elements of the sorted array are then kept. While
this might not be the optimal way to implement KNN, we
utilize this approach due to well-supported sorting routines
for PAPUs. This algorithm could be improved in future work
by implementing a heterogeneous heap (e.g., following [9]).
KNN is also guided and requires traversers. We implement
KNN using a k-d tree and experiment with particles in R4. To
ease our implementation, we fix k to be 32.

c) Barnes-Hut (BH): BH is an algorithm for approxi-
mating particle simulations. Given a set of particles P , every
p ∈ P needs to compute a force interaction with every other
p′ ∈ P . Directly performing this computation requires |P |2
interaction computations. However, the BH algorithm allows
the force to be approximated by particles that are sufficiently
far apart from each other. For each p ∈ P , a traverse-compute
routine is performed on a spatial partitioning tree of P , T (P ).
At each interior node, p checks its distance to the centroid of
the bounding box B. If the distance is far enough (set by a
parameter θ), then the particles in B are approximated.

Unlike in the NN algorithms, BH doesn’t require traversals
ever actually reach leaf nodes. Thus, increasing the leaf
node size does not have as much of a dramatic increase in
performance. However, our heterogeneous implementation can
still provide a considerable speedup (Sec. VI). Additionally,
BH has an unguided traversal pattern as the traversal does not
change from the results of a leaf node computation. Thus BH
is implemented without traversers. In Grove, we instantiate BH
in R3 using an octree. We set θ to 0.01, which is in similar
to other works [5].



B. Node Computations

a) Distance Metrics: Each algorithm can be instanti-
ated with different distance metrics. The different metrics
can change the intensity of node computations, which has a
significant impact on the speedups (discussed in Sec. VI-B).
For NN and KNN, Grove implements three distance metrics;
given two points p and w (and their coordinate vector v⃗) the
three metrics are:

• Euclidean (Euc): K(p.v⃗, w.v⃗) =
√∑

(p.v⃗ − w.v⃗)2

• Manhattan (Man): K(p.v⃗, w.v⃗) =
∑

|p.v⃗ − w.v⃗|
• Chebyshev (Che): K(p.v⃗, w.v⃗) = max |p.v⃗ − w.v⃗|

b) Interaction: BH requires an interaction computation
on top of the distance computation. In scientific computing,
the interaction is often a particle force, like gravity. However,
BH can also be used in learning applications, e.g., for kernel
density estimation [54], which takes a point cloud and esti-
mates its probability density. The interaction can be a variety
of probability functions. Grove implements three interactions
for BH: one scientific interaction and two learning interactions:

• Gravity (Gra): K(p, w) = −G
mpmw

|rpw|2 r̂pw, where G is the
gravitational constant, mp,mw is mass of particle p, w,
and |rpw| is the distance between p, w, and r̂pw is the
unit vector from p to w.

• Gaussian (Gau): K(x) = exp(− x2

2h2 ), where h is a
constant, and x is the euclidean distance.

• Top hat (Top): K(x) = 1 if x < h, where x is the same
as in Gaussian.

V. EXPERIMENTAL METHODOLOGY AND PLATFORMS

A. Backend Implementations

We implement the Redwood backend for three SMHS
programming platforms: CUDA, SYCL, and HLS. In all cases,
the basic node computation kernels (excluding reductions
are sorting) were implemented using simple functions. We
compile Redwood front end with g++ with optimization level
-03. We link the front end to the corresponding back end
once it is compiled with its required framework.

a) CUDA: We implement USM with CUDA’s unified
memory [37, App. N]; on Nvidia’s SMHSs, e.g., the Jetson se-
ries [38], this memory is directly shared between the CPU and
GPU, without requiring explicit copies. The Redwood_AWQ
is implemented using CUDA streams [37, Sec. 3.2.7.5]; which
allows for asynchronous kernel launches and synchronization.
For reductions and sorting, we utilize the high-performance
CUB library [32]. The CUDA backend is compiled with nvcc.

b) SYCL: We implement USM with SYCL’s unified
memory [15, Sec. 4.8.3.4]. The Redwood_AWQ is imple-
mented using SYCL queues [15, Sec. 4.6.5]. We were unable
to find optimized reduction kernels for SYCL, so we imple-
mented batched reductions to be per-thread parallel over each
batch. For larger reductions, we implemented a tree reduction.
We perform sorting on the CPU, as we were unable to find
optimized SYCL sorting kernels. The SYCL backend could
be improved if optimized libraries were provided. The SYCL
backend is compiled with Intel’s OneAPI framework.

c) High-Level Synthesis: The tightly-integrated CPU-
FPGA system we target can straightforwardly share CPU-
allocated memory, and peak throughput can be achieved by
reading/writing an entire cache line per memory access. Thus
USM can be implemented with a simple aligned_alloc
call. We implemented our kernels using Algorithmic C [46],
synthesized them with Catapult HLS [47], and recorded the
post-HLS timing information. To utilize an optimized sorting
network for KNN, we utilize the Spiral Project: Sorting Net-
work IP Generator [61], which generates customized sorting
networks in synthesizable RTL Verilog.

B. Evaluation Platforms

We evaluate Grove on five platforms, summarized in Tab. II:
two Nvidia Jetsons, two Intel chips, and one experimental,
tightly-integrated CPU/FPGA system called Duet [27]. The
Nvidia and Intel devices can simply run the Grove benchmarks
that have been compiled with their backend.

Because the Duet system is new, it is most easily evalu-
ated using simulation. To simulate tightly-integrated FPGA
accelerators, we used the gem5 [4] simulator with a Duet
extension [26]. We chose Duet over commodity CPU/FPGA
systems (e.g., Xilinx ZynQ [56]) as we are particularly inter-
ested in the combination of many-core processors and multiple
small, embedded FPGAs. Most commodity CPU/FPGA sys-
tems are FPGA-centric SoCs with a monolithic FPGA and
a few cores, and their acceleration paradigm is similar to
the large GPU-oriented systems. In contrast, the Duet system
represents a very different family of SMHSs that have a low
accelerator invocation overhead, facilitate fine-grained mem-
ory sharing, and excel at pipelined parallelism. To represent
realistic offload overhead, the simulation models multistage
asynchronous FIFOs, and CPU/FPGA clock penalties are also
accurately modeled with 1.5GHz/333MHz.

C. Evaluation Methodology

Inputs are synthetically generated data of one million points
in the R3/R4, in uniform and multivariate Gaussian distri-
butions (Sec. VI-D). Each Grove benchmark was run three
times on each system and an average was taken, although we
did not observe high variance, which has been reported for
some SMHSs [1]. The runs for Duet were only executed once
as it executes on a cycle-level simulator. Additionally, given
that simulation time can be prohibitively long, we reduced the
dataset size by a factor of 10.

We do a run of pilot experiments and find the best reduction
batch size for each platform to be 1024, 512, and 1, for Nvidia,
Intel, and Duet, respectively. Using ping-pong buffering, this
leads to 2048, 1024, and 2 traversers for each platform,
respectively. Duet does not benefit from batching as it is
optimized for pipelining and does not have kernel launch
overhead like GPU systems have. We then run all benchmarks
with leaf node sizes varying between 32 and 1024 (considering
powers of two). As a homogeneous baseline, we implement
a sequential CPU backend. We sweep through the leaf node



TABLE II
SHARED MEMORY HETEROGENEOUS SYSTEMS EVALUATED WITH GROVE

Device Backend CPU Accelerator

Nvidia Jetson Nano CUDA ARM Cortex-A57 128-core Maxwell
Nvidia Jetson Xavier CUDA Carmel ARMv8.2 384-core Volta
Intel i7-9700K SYCL i7-9700K Intel UHD Graphics 630
Intel i5-10210U SYCL i5-10210U Intel UHD Graphics 620
Duet HLS RISC-V TimingSimpleCPU Duet FPGA

sizes to find the best homogeneous CPU configuration. Our
baseline does not incorporate traversers or batches.

In this work, we consider only the traverse-compute portion
of the application and discount the cost of building the tree.
Indeed, our pilot experiments show that the traverse-reduce
routine is over 150× more costly than building the tree.
However, building the tree will start to become the bottleneck
once traversing is optimized enough. In future work, we hope
to explore optimizing tree construction, e.g., following [7].

Finally, we note that Redwood is not meant to provide the
most optimal implementation of traverse-reduce workloads.
Instead, Redwood and Grove are meant to provide a bench-
mark suite to show the potential for heterogeneous computing
for this workload domain. Our results capture heterogeneous
performance characteristics, and our design captures important
abstraction insights. Future work can further optimize Red-
wood, e.g., using optimizations discussed in [52].

VI. BENCHMARKING SMHS

We begin by highlighting the potential of heterogeneous
computing for traverse-compute workloads. Figure 4 shows
the speedup of heterogeneous implementations of Grove over
homogeneous implementations, in both cases, using their
optimal leaf node sizes. We discuss the results per system:

• Duet has the highest speedups among all platforms, with
a 13.53× highest speedup and a 6.43× geomean speedup.
This is because Duet is a simple in-order CPU, which
doesn’t have the ability to tolerate latency from irregular
tree-traversal computations. Thus, it is highly beneficial
to offload a high amount of computation to the FPGA.

• Nvidia has the next highest speedups, e.g., with the
Xavier achieving an 8.12× highest speedup and a 5.13×
geomean speedup, and the Nano achieving a 6.9× highest
speedup and a 4.71× geomean speedup. This is because
the powerful Nvidia GPUs can offset the cost of the node
computations from the smaller ARM CPUs.

• Intel has the smallest speedups, and sometimes slow-
downs, with KNN on the i5 slowing down by almost
2×. However, NN on the same device almost achieves a
3.36× speedup. The Intel CPUs are very powerful, and
the Intel GPUs are relatively small, thus there is less to
be gained by offloading node computations.

A. Impact of Leaf Node Flexibility

The flexible data structures provided with Redwood allow us
to highlight how the leaf node size, i.e., which allows a flexible
heterogeneous decomposition, can influence the performance

of Grove. Table III shows the optimal leaf node sizes for each
application on heterogeneous and homogeneous implementa-
tions. On average, PAPUs have 4.33× bigger optimal leaf node
sizes than CPU baselines. In computing intense workloads like
BH, the optimal leaf size between PAPUs can have up to a
256× difference (Duet BH Gaussian).

The same workload can have different optimal leaf node
sizes on different platforms. Figure 5 shows the breakdown of
BH Euclidean ran on each platform. The Intel i5 achieves at
most 1.45× speedup at leaf size 64, it drops immediately and
turns into a slowdown after leaf size 256. In contrast, Duet
has the optimal leaf size at 512, achieving a 7.58× speedup,
5.22× faster than i5-10210 at its optimal configuration.

B. Impact of Distance Metrics

The abstractions provided in Redwood allow us to eval-
uate the performance impact of different intensities of node
computations. Using one platform from each backend, Fig. 6
shows how different distance metrics affect the performance
of the NN applications. We show results across a selection of
leaf nodes to show that the different distance metrics retain
the optimal leaf node size (per platform), but have different
speedup potentials. We see that the Chebyshev distance, whose
computation only consists of low-cycle instructions, has less
performance gain than Euclidean distance, which contains
square root floating point operations.

The shape of these graphs over different leaf node sizes
shows that performance increases as the PAPU is able to
handle more and more computation. At high leaf node sizes,
the shallow tree will prune too little of the traversal space, and
the extra computation overwhelms the PAPU, as seen with the
performance drop.

C. Impact of Batching

We next examine the impact of batching leaf nodes. We
found that batching is vitally important to the CUDA and
SYCL backend, for different reasons. In CUDA, we found the
kernel launch overhead was significant (as has been reported,
e.g., in [33]). Figure 7 shows the breakdown CPU execution
time spent in NN Euclidean when run on the Nano with
different batching sizes (measured with nvprof). In the
case of a batch size of 32, 83% of the time was used on
overhead (kernel launch overhead and synchronization). When
we increase the batch size to 1024, the overhead was reduced
to 16% of the time. On the other hand, SYCL has little
overheads from kernel launching, i.e., consistently ≤ 3%
according to VTune. However, batching still allows our batched
reduction kernel to exploit more parallelism, and thus, we
found an optimal batch size for SYCL to be 512.

The Duet system has even lower overhead because eFPGA-
emulated accelerators are invoked by one or very few accesses
to certain memory-mapped control registers. In addition, since
the Duet system implements bi-directional cache coherence
between the CPUs and the eFPGAs, there is no need to
explicitly batch and transfer data. Thus, leaf node data are
implicitly shared with the eFPGA-emulated accelerators and
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TABLE III
OPTIMAL LEAF NODE SIZES FOR HETEROGENEOUS IMPLEMENTATION (LEFT-HAND SIDE) AND HOMOGENEOUS CPU IMPLEMENTATION (RIGHT-HAND

SIDE) FOR EACH WORKLOAD AND PLATFORM. THE OPTIMAL LEAF NODE SIZES ARE DETERMINED BY RUNNING THROUGH EACH CONFIGURATION.

BH Gra BH Gau BH Top NN Euc NN Man NN Che KNN Euc KNN Man KNN Che Average Ratio

Jetson Nano 256/8 256/8 128/8 512/256 512/256 512/256 256/128 256/128 256/256 327/115 2.26
Jetson Xavier 128/16 128/8 128/8 1024/128 1024/256 512/64 512/64 512/64 512/64 498/75 6.67
i7-9700k 64/8 128/8 128/8 256/64 256/64 128/64 64/64 64/64 64/64 128/45 2.82
i5-10210U 64/8 64/8 64/8 256/64 256/64 256/64 32/64 32/64 32/64 117/45 2.59
Duet 512/4 512/2 512/4 512/32 512/32 256/16 128/16 128/32 128/32 355/19 18.82

Average 205/9 218/7 192/7 512/109 512/134 333/93 198/67 198/70 198/96 285/66 4.33
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Fig. 5. Speedups of BH Gau application across different leaf node sizes on
our five evaluation platforms.

passed simply by writing the base memory addresses into the
aforementioned control registers.

D. Impact of Input Distribution

We consider input particle distribution in terms of spatial
sparsity, where the input data can impact the depth and irreg-
ularity of a constructed spatial partitioning tree. We ran our
tests on both uniform distributions, in which the particles have
evenly distributed across the computation domain (balanced
tree), and multivariate Gaussian distribution, which forms
clustered particles (imbalanced tree). We observed the sparse
dataset generally takes longer to complete, as the nature of
BH and NN/KNN algorithms do (e.g., uniform NN is 1.24×
faster than multivariate Gaussian NN). However, the speedup
ratio remains the same across systems and applications.

E. Impact of Threading

We now experiment with scaling Grove benchmarks to
multiple CPU threads. In this experiment, each CPU thread

has its own accelerator work queue, and thus each thread
can submit leaf node computations to the PAPU. We use one
representative platform from each backend and experiment
with 1, 2, 4, and 8 threads on the NN Euclidean benchmark,
and show two leaf node sizes: the optimal size for 1 thread (as
shown in Tab. III) and the minimal size of 32. Our results are
shown in Fig. 8, with the baseline for each platform/leaf-node
size pair being the single-threaded heterogeneous runtime.

We observe different trends for different platforms. For Duet
and Nvidia, we see that when the optimal leaf node size is
picked, there is no speedup gain (horizontal lines). Thus, this
leaf node size is saturating the PAPU with one thread; adding
more threads does not provide any improvement. However,
they still have some scalability when a smaller leaf size is
picked, as the PAPU is no longer saturated and can take work
from additional threads. We see that the Intel device can scale
to multiple threads, as the PAPU is not fully saturated (poten-
tially due to our less optimal SYCL kernel implementations).
In future work, we hope to have Redwood configurable so that
some CPU threads might perform the homogeneous traverse-
reduce computation if the PAPU is saturated.

F. Heterogeneous System Design Insights

Our results from running Grove across our evaluation plat-
forms have provided several insights, both for new heteroge-
neous system designers, as well as optimization targets for
existing systems.

a) PU Relative Throughputs: Our Duet backend
achieved the most speedups, where only simple in-order RISC-
V cores were used, which lack the hardware components to
tolerate long memory latency as seen in OoO cores like the
Intel ones. OoO cores are generally more complex and larger
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in die area, and consume more power. But a combination of
simple in-order cores and accelerators, it may be possible to
achieve similar or even better performance compared to OoO
cores on the same die area. This could result in more energy-
efficient and cost-effective systems that are better suited to the
needs of resource-constrained environments. Future research
could explore the design space exploration of simple in-order
cores and accelerators to identify the optimal configurations
for specific workloads using Redwood.

b) Low-cost Kernel Submission: Having a low-cost ker-
nel submission can benefit systems to efficiently execute tree
traversal workloads on SMHSs, as had in Duet FPGA. Kernel
launch overhead can be expensive on GPU backends. As seen
in Section VI-C, there is potential for further optimization of
kernel submission on GPUs to gain additional performance.
Applying the persistent thread approach [16] to GPU kernel

submission could potentially lead to further gains in perfor-
mance, especially for workloads that involve frequent small
kernel launches.

G. Integrated vs. Discrete

We conclude our results by discussing if Redwood is useful
for discrete PAPU systems, i.e., which would require memory
transfers, as shown in Figure 1-d. Because Nvidia allows the
unified memory abstraction on discrete GPUs (with memory
copies happening behind the scenes), we can run Grove on
discrete systems. We execute the NN Euclidean application on
a Quadro RTX 4000 with an Intel i7 CPU. We still observe a
3× speedup on the heterogeneous implementation over the
homogeneous implementation; thus, Redwood can also be
useful in this domain.

However, we believe Redwood is still most suited for
SMHSs for several reasons: (1) discrete GPU systems often
have very large, powerful GPUs. In which case it may be
more beneficial to use a homogeneous PAPU-based imple-
mentation, such as [6]. Additionally, the memory transfer
overhead requires additional consideration; at low batch sizes,
we found that memory transfers were taking over 30% of
the total execution time. Because of this, we aim to continue
prioritizing SMHSs as the main target of Redwood.

VII. RELATED WORK

As noted in Sec. I, there have been many works on het-
erogeneous computing, as seen in this survey [33]. Here, we
focus on the most closely-related works and themes.

a) Homogeneous Tree Traversals: Prior works on tree
applications were optimized for only one type of PU, e.g., BH
implemented solely on the CPU in [59], in discrete GPUs [2],
[6], and in discrete FPGAs [11]. Sparse tree/graph workloads
such as Unbalance Tree Search [20] and Lonestar [25] have
been studied. However, these works are also GPU-centric
implementations, which is illustrated in Fig. 1-a.

None of these works fully utilize the PU resources that are
available on a SMHS. Additionally, these works are highly
specialized to their specific architecture and do not provide
abstraction layers that support portability, as Redwood does.
Other works have proposed further optimizations to tree traver-
sal computations, e.g., [52]. While they are evaluated on CPU-



only platforms, we hope to incorporate these optimizations into
future versions of Redwood.

b) Adaptive Heterogeneous Task Scheduling: Another
line of work utilizes the workload partition collaboration pat-
tern (as defined in [51]), where identical tasks (e.g., iterations
from a parallel_for construct) are executed across both a
CPU and GPU system, as illustrated in Fig. 1-b. This has been
implemented for the BH application in [24], [36], [53]; these
approaches use adaptive partitioning strategies so that runtime
is equalized across CPU and GPU. Other prior works [10]
have used a more dynamic approach, e.g. work-stealing so
that each PU is more fully occupied.

However, in the above approaches, the CPU and GPU are
performing identical tasks that are not specialized to their
respective architecture. Redwood maps tasks to PUs that
can efficiently compute them: traversals on CPUs and node
computations on PAPUs. Furthermore, these works have yet
to examine tree traversal workloads in-depth, as we have
done in this work. Tree workload naturally has specialized
heterogeneous decomposition, knowing which parts of the
application map best for each PU.

c) Specialized Heterogeneous Decomposition: Other
works map subtasks to different PUs based on where they
are most efficiently computed, as illustrated in Fig. 1-c. For
example, [21] proposes a decomposition for the Fast Multipole
Method for the N-body problem (similar to BH). Much like
Redwood, they map node computations to the GPU and
data structure traversal to the CPU. Another related approach
in [28] decomposes medical image analysis into regular and
irregular tasks, which are mapped to the CPU and GPU,
respectively. However, their work does not have a flexible
decomposition, which enables the workload to be evenly split
between the different PUs of a SMHS, as is provided by
Redwood. This is essential for performance portability given
the variety of different heterogeneous systems.

d) Accelerating Workloads on SMHSs: To address the
expensive data movement in a heterogeneous workload, [29],
[34], [58] propose data-movement engines to overcome data
transfer overhead on discrete heterogeneous systems. However,
these are hardware solutions, whereas Redwood is a software
solution, that works on existing SMHSs.

Other works have investigated accelerating workloads on
SMHSs, such as radix sort [12] and key-value stores [19]. Both
workloads show that low CPU-GPU data transfer overhead
is a key advantage in shared memory CPU-GPUs, and is
more energy efficient than discrete GPUs [33]. However, these
works have not yet examined tree traversal workloads in-depth,
as we have done in this work.

VIII. CONCLUSIONS

In this work, we identified traverse-compute workloads as
an ideal heterogeneous workload, where CPUs and PAPUs
can efficiently collaborate using distinct workloads that fit
their unique architectural strengths. We developed Redwood:
a framework that has a simple backend and allows for flex-
ible heterogeneous decompositions so that traverse-compute

workloads can be tuned across the ever-growing diversity
of shared-memory heterogeneous systems. We implemented
nine benchmarks using Redwood and evaluated five SHMS
backends, highlighting the importance of configurable het-
erogeneous parameters and showing significant heterogeneous
speedups for this workload domain.
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