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Many applications in edge computing can benefit from utilizing 
tree data structures to accelerate their workloads

Showed how open-source hardware can be leveraged to 
accelerate a specific class of tree algorithms, which we call 
traverse-compute

Evaluated open-source heterogeneous architecture called Duet, 
using a recently published open-source framework and 
benchmark suite Redwood and Grove
◦ w/ 9 pragmatic traverse-compute applications

Achieved
◦ 13.53x highest speedup
◦ 6.43x geomean speedup

Insight: Traverse-compute workload has natural heterogeneous 
decompositions on modern shared memory system-on-chips

Highlights
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Edge computing are getting popular …

But they has constraints
◦ e.g., energy or latency requirement

Application of edge computing
◦ Surveillance cameras

◦ Autonomous vehicles

◦ Mobile gaming

Motivation: Accelerating Computations at Edge
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Edge computing are getting popular …

But they has constraints
◦ e.g., energy or latency requirement

Application of edge computing
◦ Surveillance cameras

◦ Autonomous vehicles

◦ Mobile gaming

Modern edge devices are becoming increasingly 
heterogeneous
◦ w/ specialized Processing Units (PUs)

Motivation: Accelerating Computations at Edge

We need to efficiently utilize these available system resources
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From David Brooks lab at Harvard: 
https://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis

What do we mean by 
resources?
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From David Brooks lab at Harvard: 
https://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis

What do we mean by 
resources?
•E.g., less than 20% of the die area of 
an iPhone contains the CPU

•The rest contains specialize 
Programmable Accelerating PUs (PAPU) 
• e.g., integrated GPUs, FPGAs 

• Interconnected to a shared memory 
hierarchy

•Shared Memory 
Heterogeneous System 
(SMHS) enables efficient 
communication between 
PUs
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From David Brooks lab at Harvard: 
https://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis

What do we mean by 
resources?
•E.g., less than 20% of the die area of 
an iPhone contains the CPU

•The rest contains specialize 
Programmable Accelerating PUs (PAPU) 
• e.g., integrated GPUs, FPGAs 

• Interconnected to a shared memory 
hierarchy

•Shared Memory 
Heterogeneous System 
(SMHS) enables efficient 
communication between 
PUsHow can workloads efficiently utilize each PU?
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Features: High-
performance cores,  
reorder buffer, load store 
queue, …

+ Latency optimized

- Limited throughput

GPU

Features: SIMT (Single 
Instruction, Multiple 
Threads) execution, 
coalesced memory access

+ Throughput optimized

- Warp Divergence

FPGA

Features: Specialized tasks, 
Pipeline parallelism

+ Close to ASIC performance

- Orders-of-magnitude harder 
to program

CPU Programmable Accelerating PUs (PAPU) 

Processing Units (PU) Characteristics

Good for irregular programs
Good for accelerating 
compute-intense programs



Input data Spatial Partition
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Trees on the edge

R
Root 
Node

• Edge applications need to process a large 
amount of data

• They can utilize tree structures and traversals 
to perform edge tasks
• E.g., octree, k-dimensional tree
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Trees on the edge

R
Root 
Node

• Edge applications need to process a large 
amount of data

• They can utilize tree structures and traversals 
to perform edge tasks
• E.g., octree, k-dimensional tree

• The dataset are organized into a hierarchical 
tree structure, allowing data to be efficiently
searched from 𝑂 𝑛 to 𝑂 log 𝑛
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Traverse-Compute Workloads
•Repeatedly traversing a sparse tree structure

•Each traversal consists of 
• Indirect memory loads at branch nodes (Red 

box)

• Dense data to be processed at leaf nodes 
visited (Orange box)
• Computing pairwise interactions (e.g., Euclidean 

distance)

• Reductions (e.g., sum, min)

•Example workloads:
• Barnes-hut Algorithm (octree)

• Nearest Neighbor (kd tree)

• Ray Tracing (BVH)

R

Irregular Memory 
Accesses at branch nodes

Dense Computations at leaf nodes

Root 
Node
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Decomposing Traverse Compute Workloads

Tree applications can benefit from fine-
grained acceleration

CPUs are good at handling dynamic control 
flows and tolerating indirect memory loads

PAPUs are good at accelerating regular, 
compute-intense operations

A natural heterogeneous approach is to

CPU traverses the tree

Computations at leaf 
nodes are offloaded to the 

accelerator
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Can be merged into 

3 data points 3 data points

6 data points

Larger node sizes tradeoffs

+ Larger chunk of contiguous 
data

+ Less irregular accesses in     
tree traversals

- Potentially unneeded 
computation

Accelerating Traverse-compute workloads on SMHSs
•The tree can be parameterized by how many data points exist on the leaf nodes.

CPU traverses the tree

Heterogeneous Approach

Computation is offloaded
to accelerator



14

Can be merged into 

3 data points 3 data points

6 data points

Larger node sizes tradeoffs

+ Larger chunk of contiguous 
data

+ Less irregular accesses in     
tree traversals

- Potentially unneeded 
computation

CPU traverses the tree

Heterogeneous Approach

Accelerating Traverse-compute workloads on SMHSs
•The tree can be parameterized by how many data points exist on the leaf nodes.

…
CPU

PAPU

Execution Timeline

CPU

PAPU

…

Components of task that best 

suited to CPU

Components of task that best 

suited to PAPU

Flexible & Specialize Heterogeneous 
Decomposition

Computation is offloaded
to accelerator

w/ Redwood
(This work)
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This work: Redwood Overview

Yanwen 98.3%

KNN based Facial recognition

Users implement tree 
applications using our APIs

Target systems w/ different 
CPU/PAPU throughputs

Nvidia SoCsIntel SoCs
Duet

RISC-V TimingSimple CPU

w/ Duet eFPGA

Nearest Neighbor 13.53x faster 

at optimal leaf node size 512
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Redwood: APIs and Data Structures
CPU Sequential Code (NN)

tree = KDTree()
min_dist = 99999.9999
def traverse(node, q):

if is_leaf(node):

# Reduce Leaf Node
for i in range(node.leaf_size): 

kernel_func(q, node.data[i])

else:
dist = compute_dist(q, node.data[0])
min_dist = min(min_dist, dist)
traverse(node.leaf_child)
if check_other_side(dist):

traverse(node.right_child)

tree = KDTree(leaf_size=32)

redwood_set_query(q)

def traverse(node, q):

if is_leaf(node):
redwood_compute_leaf(node.data())

else:
dist = compute_dist(q, node.data[0])
min_dist = min(min_dist, dist)
traverse(node.leaf_child)
if check_other_side(dist):

traverse(node.right_child)

w/ Redwood API

Implemented 
using:



17

Redwood Heterogenous Optimizations

Flexible Leaf Size Configuration

• Adapt to various heterogeneous 
systems with different relative 
throughput between the CPU and the 
PAPU

77

Traverse Heavy Compute Heavy

…
CPU

PAPU

Execution Timeline

CPU

PAPU

…
Components of task that best 

suited to CPU

Components of task that best 

suited to PAPU

(Optimal configuration)
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Traverser Runtime

• Allow a single CPU thread to 
execute many traversals 
concurrently to avoid 
stalling when a traversal 
depends on a PAPU 
accelerated value

Redwood Heterogenous Optimizations

Start t

Process A

Resume t

Process B

CPU

PAPU

time = 0 time = 1 time = 2 time = 3 time = 4

A B C

Root

A B C

Root

Start t continue when result ready
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Traverser Runtime

• Allow a single CPU thread to 
execute many traversals 
concurrently to avoid 
stalling when a traversal 
depends on a PAPU 
accelerated value

Redwood Heterogenous Optimizations

Start t

Process A

Resume t

Process B

Start t’

Process C

Resume t’

Process D

CPU

PAPU

time = 0 time = 1 time = 2 time = 3 time = 4

A B C A B C A CB

Root Root Root

time = 0 time = 1 time = 2

Suspend t Start t’ Resume t

• Lightweight 
Coroutine
• Suspend
• Resume
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Grove: Benchmark Suite for SMHS

Can be found in many applications
◦ Astrophysics 

◦ Facial recognition

◦ Anomaly detection

◦ Outlier detection

◦ Particle simulation 

Grove contains 9 traverse-compute workloads

Computation Patterns
◦ Aggregation (sum)

◦ Reduction (e.g., min)

◦ Sorting

Various Distance Metrics
◦ Euclidean

◦ Manhattan

◦ Chebyshev

Tree Structures
◦ Octree/quadtree

◦ k-d tree

Three Algorithms
◦ Barnes Hut

◦ Nearest Neighbor

◦ k Nearest Neighbor 
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Evaluating an Open-Source SMHS: Duet

Duet
◦ A tightly-integrated, cache-coherent CPU-

FPGA architecture 

◦ Enables fine-grained transparent data 
sharing between the processors and the 
eFPGA-emulated accelerators

◦ Simulated in using Gem5-Duet extension

[1] Li, Ang, August Ning, and David Wentzlaff. HPCA'23

Platform Backend CPU CPU 
Frequency

Accelerator Accelerator 
frequency

Duet 
(simulated in 

gem5)

HLS RISC-V 
TimingSimple

CPU

1.5 GHz Duet 
eFPGA

333MHz

Duet[1]

Configuration
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Grove Results Overview

Speedups of the best heterogeneous 
configuration vs. the best homogeneous 

configuration of Grove.

Speedups
highest 13.53x
geomean 6.43x

We swept through the leaf node sizes to 
find the optimal configuration that yield the 
best performance,
◦ Average 18× larger leaf node size than the CPU
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We compared Duet to GPU-based SMHSs

Kernel Submission Cost
◦ Traverse-compute applications frequently

invoke small kernels

◦ Useful works are shown in Green

◦ Orange/Blue are overheads

◦ Low-cost kernel submission is important for 
accelerating applications on edge devices

◦ Duet has minimal offload overhead
Batching multiple GPU kernels into 
a single/larger kernel helps 
amortizing kernel launching 
overhead on GPU-based systems
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Conclusion

Team
Yanwen Xu yxu83@ucsc.edu

Ang Li angl@princton.edu
Tyler Sorensen tyler.sorensen@ucsc.edu

Open-Source Repo
Redwood & Grove at 

https://github.com/xuyanwen2012/redwood-rt

✓We present how open-source hardware design can be 
used to accelerate a pragmatic class of applications

✓We show that the Duet system can accelerate a suite of 
traverse-compute applications by up to 13.5× with a 
geomean of 6.43×

✓We highlight the use of Grove, an open-source benchmark 
suite of traverse-compute workloads that utilize fine 
grained synchronization across PUs, and thus can provide a 
way for architecture researchers to evaluate their 
heterogeneous designs UC Santa Cruz Redwood Grove

mailto:yxu83@ucsc.edu
mailto:angl@princton.edu
mailto:tyler.sorensen@ucsc.edu
https://github.com/xuyanwen2012/redwood-rt
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