
1

Evaluating Shared Memory
Heterogeneous Systems Using
Traverse-compute Workloads

Yanwen Xu

University of California, Santa Cruz

Ang Li

Princeton University

Tyler Sorensen

University of California, Santa Cruz

Second Workshop on Open-Source Computer Architecture Research (OSCAR 2023) Orlando, Florida

2

Many applications in edge computing can benefit from utilizing
tree data structures to accelerate their workloads

Showed how open-source hardware can be leveraged to
accelerate a specific class of tree algorithms, which we call
traverse-compute

Evaluated open-source heterogeneous architecture called Duet,
using a recently published open-source framework and
benchmark suite Redwood and Grove
◦ w/ 9 pragmatic traverse-compute applications

Achieved
◦ 13.53x highest speedup
◦ 6.43x geomean speedup

Insight: Traverse-compute workload has natural heterogeneous
decompositions on modern shared memory system-on-chips

Highlights

3

Edge computing are getting popular …

But they has constraints
◦ e.g., energy or latency requirement

Application of edge computing
◦ Surveillance cameras

◦ Autonomous vehicles

◦ Mobile gaming

Motivation: Accelerating Computations at Edge

4

Edge computing are getting popular …

But they has constraints
◦ e.g., energy or latency requirement

Application of edge computing
◦ Surveillance cameras

◦ Autonomous vehicles

◦ Mobile gaming

Modern edge devices are becoming increasingly
heterogeneous
◦ w/ specialized Processing Units (PUs)

Motivation: Accelerating Computations at Edge

We need to efficiently utilize these available system resources

5

From David Brooks lab at Harvard:
https://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis

What do we mean by
resources?

6

From David Brooks lab at Harvard:
https://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis

What do we mean by
resources?
•E.g., less than 20% of the die area of
an iPhone contains the CPU

•The rest contains specialize
Programmable Accelerating PUs (PAPU)
• e.g., integrated GPUs, FPGAs

• Interconnected to a shared memory
hierarchy

•Shared Memory
Heterogeneous System
(SMHS) enables efficient
communication between
PUs

7

From David Brooks lab at Harvard:
https://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis

What do we mean by
resources?
•E.g., less than 20% of the die area of
an iPhone contains the CPU

•The rest contains specialize
Programmable Accelerating PUs (PAPU)
• e.g., integrated GPUs, FPGAs

• Interconnected to a shared memory
hierarchy

•Shared Memory
Heterogeneous System
(SMHS) enables efficient
communication between
PUsHow can workloads efficiently utilize each PU?

8

Features: High-
performance cores,
reorder buffer, load store
queue, …

+ Latency optimized

- Limited throughput

GPU

Features: SIMT (Single
Instruction, Multiple
Threads) execution,
coalesced memory access

+ Throughput optimized

- Warp Divergence

FPGA

Features: Specialized tasks,
Pipeline parallelism

+ Close to ASIC performance

- Orders-of-magnitude harder
to program

CPU Programmable Accelerating PUs (PAPU)

Processing Units (PU) Characteristics

Good for irregular programs
Good for accelerating
compute-intense programs

Input data Spatial Partition

9

Trees on the edge

R
Root
Node

• Edge applications need to process a large
amount of data

• They can utilize tree structures and traversals
to perform edge tasks
• E.g., octree, k-dimensional tree

Input data Spatial Partition

10

Trees on the edge

R
Root
Node

• Edge applications need to process a large
amount of data

• They can utilize tree structures and traversals
to perform edge tasks
• E.g., octree, k-dimensional tree

• The dataset are organized into a hierarchical
tree structure, allowing data to be efficiently
searched from 𝑂 𝑛 to 𝑂 log 𝑛

11

Traverse-Compute Workloads
•Repeatedly traversing a sparse tree structure

•Each traversal consists of
• Indirect memory loads at branch nodes (Red

box)

• Dense data to be processed at leaf nodes
visited (Orange box)
• Computing pairwise interactions (e.g., Euclidean

distance)

• Reductions (e.g., sum, min)

•Example workloads:
• Barnes-hut Algorithm (octree)

• Nearest Neighbor (kd tree)

• Ray Tracing (BVH)

R

Irregular Memory
Accesses at branch nodes

Dense Computations at leaf nodes

Root
Node

12

Decomposing Traverse Compute Workloads

Tree applications can benefit from fine-
grained acceleration

CPUs are good at handling dynamic control
flows and tolerating indirect memory loads

PAPUs are good at accelerating regular,
compute-intense operations

A natural heterogeneous approach is to

CPU traverses the tree

Computations at leaf
nodes are offloaded to the

accelerator

13

Can be merged into

3 data points 3 data points

6 data points

Larger node sizes tradeoffs

+ Larger chunk of contiguous
data

+ Less irregular accesses in
tree traversals

- Potentially unneeded
computation

Accelerating Traverse-compute workloads on SMHSs
•The tree can be parameterized by how many data points exist on the leaf nodes.

CPU traverses the tree

Heterogeneous Approach

Computation is offloaded
to accelerator

14

Can be merged into

3 data points 3 data points

6 data points

Larger node sizes tradeoffs

+ Larger chunk of contiguous
data

+ Less irregular accesses in
tree traversals

- Potentially unneeded
computation

CPU traverses the tree

Heterogeneous Approach

Accelerating Traverse-compute workloads on SMHSs
•The tree can be parameterized by how many data points exist on the leaf nodes.

…
CPU

PAPU

Execution Timeline

CPU

PAPU

…

Components of task that best

suited to CPU

Components of task that best

suited to PAPU

Flexible & Specialize Heterogeneous
Decomposition

Computation is offloaded
to accelerator

w/ Redwood
(This work)

15

This work: Redwood Overview

Yanwen 98.3%

KNN based Facial recognition

Users implement tree
applications using our APIs

Target systems w/ different
CPU/PAPU throughputs

Nvidia SoCsIntel SoCs
Duet

RISC-V TimingSimple CPU

w/ Duet eFPGA

Nearest Neighbor 13.53x faster

at optimal leaf node size 512

16

Redwood: APIs and Data Structures
CPU Sequential Code (NN)

tree = KDTree()
min_dist = 99999.9999
def traverse(node, q):

if is_leaf(node):

Reduce Leaf Node
for i in range(node.leaf_size):

kernel_func(q, node.data[i])

else:
dist = compute_dist(q, node.data[0])
min_dist = min(min_dist, dist)
traverse(node.leaf_child)
if check_other_side(dist):

traverse(node.right_child)

tree = KDTree(leaf_size=32)

redwood_set_query(q)

def traverse(node, q):

if is_leaf(node):
redwood_compute_leaf(node.data())

else:
dist = compute_dist(q, node.data[0])
min_dist = min(min_dist, dist)
traverse(node.leaf_child)
if check_other_side(dist):

traverse(node.right_child)

w/ Redwood API

Implemented
using:

17

Redwood Heterogenous Optimizations

Flexible Leaf Size Configuration

• Adapt to various heterogeneous
systems with different relative
throughput between the CPU and the
PAPU

77

Traverse Heavy Compute Heavy

…
CPU

PAPU

Execution Timeline

CPU

PAPU

…
Components of task that best

suited to CPU

Components of task that best

suited to PAPU

(Optimal configuration)

18

Traverser Runtime

• Allow a single CPU thread to
execute many traversals
concurrently to avoid
stalling when a traversal
depends on a PAPU
accelerated value

Redwood Heterogenous Optimizations

Start t

Process A

Resume t

Process B

CPU

PAPU

time = 0 time = 1 time = 2 time = 3 time = 4

A B C

Root

A B C

Root

Start t continue when result ready

19

Traverser Runtime

• Allow a single CPU thread to
execute many traversals
concurrently to avoid
stalling when a traversal
depends on a PAPU
accelerated value

Redwood Heterogenous Optimizations

Start t

Process A

Resume t

Process B

Start t’

Process C

Resume t’

Process D

CPU

PAPU

time = 0 time = 1 time = 2 time = 3 time = 4

A B C A B C A CB

Root Root Root

time = 0 time = 1 time = 2

Suspend t Start t’ Resume t

• Lightweight
Coroutine
• Suspend
• Resume

20

Grove: Benchmark Suite for SMHS

Can be found in many applications
◦ Astrophysics

◦ Facial recognition

◦ Anomaly detection

◦ Outlier detection

◦ Particle simulation

Grove contains 9 traverse-compute workloads

Computation Patterns
◦ Aggregation (sum)

◦ Reduction (e.g., min)

◦ Sorting

Various Distance Metrics
◦ Euclidean

◦ Manhattan

◦ Chebyshev

Tree Structures
◦ Octree/quadtree

◦ k-d tree

Three Algorithms
◦ Barnes Hut

◦ Nearest Neighbor

◦ k Nearest Neighbor

21

Evaluating an Open-Source SMHS: Duet

Duet
◦ A tightly-integrated, cache-coherent CPU-

FPGA architecture

◦ Enables fine-grained transparent data
sharing between the processors and the
eFPGA-emulated accelerators

◦ Simulated in using Gem5-Duet extension

[1] Li, Ang, August Ning, and David Wentzlaff. HPCA'23

Platform Backend CPU CPU
Frequency

Accelerator Accelerator
frequency

Duet
(simulated in

gem5)

HLS RISC-V
TimingSimple

CPU

1.5 GHz Duet
eFPGA

333MHz

Duet[1]

Configuration

22

Grove Results Overview

Speedups of the best heterogeneous
configuration vs. the best homogeneous

configuration of Grove.

Speedups
highest 13.53x
geomean 6.43x

We swept through the leaf node sizes to
find the optimal configuration that yield the
best performance,
◦ Average 18× larger leaf node size than the CPU

23

We compared Duet to GPU-based SMHSs

Kernel Submission Cost
◦ Traverse-compute applications frequently

invoke small kernels

◦ Useful works are shown in Green

◦ Orange/Blue are overheads

◦ Low-cost kernel submission is important for
accelerating applications on edge devices

◦ Duet has minimal offload overhead
Batching multiple GPU kernels into
a single/larger kernel helps
amortizing kernel launching
overhead on GPU-based systems

24

Conclusion

Team
Yanwen Xu yxu83@ucsc.edu

Ang Li angl@princton.edu
Tyler Sorensen tyler.sorensen@ucsc.edu

Open-Source Repo
Redwood & Grove at

https://github.com/xuyanwen2012/redwood-rt

✓We present how open-source hardware design can be
used to accelerate a pragmatic class of applications

✓We show that the Duet system can accelerate a suite of
traverse-compute applications by up to 13.5× with a
geomean of 6.43×

✓We highlight the use of Grove, an open-source benchmark
suite of traverse-compute workloads that utilize fine
grained synchronization across PUs, and thus can provide a
way for architecture researchers to evaluate their
heterogeneous designs UC Santa Cruz Redwood Grove

mailto:yxu83@ucsc.edu
mailto:angl@princton.edu
mailto:tyler.sorensen@ucsc.edu
https://github.com/xuyanwen2012/redwood-rt

	Default Section
	Diapositiva 1: Evaluating Shared Memory Heterogeneous Systems Using Traverse-compute Workloads

	Oscar
	Diapositiva 2: Highlights
	Diapositiva 3: Motivation: Accelerating Computations at Edge
	Diapositiva 4: Motivation: Accelerating Computations at Edge
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9: Trees on the edge
	Diapositiva 10: Trees on the edge
	Diapositiva 11: Traverse-Compute Workloads
	Diapositiva 12: Decomposing Traverse Compute Workloads
	Diapositiva 13
	Diapositiva 14

	Version 2
	Diapositiva 15: This work: Redwood Overview
	Diapositiva 16: Redwood: APIs and Data Structures
	Diapositiva 17: Redwood Heterogenous Optimizations
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20: Grove: Benchmark Suite for SMHS
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23: We compared Duet to GPU-based SMHSs
	Diapositiva 24: Conclusion

