Baskin B
Engineering W

Evaluating Shared Memory
Heterogeneous Systems Using
Traverse-compute Workloads

Yanwen Xu Ang LI Tyler Sorensen

University of California, Santa Cruz Princeton University University of California, Santa Cruz

g -

)

T

Second Workshop on Open-Source Computer Architecture Research (OSCAR 2023) Orlando, Florida ”

Highlights

Many applications in edge computing can benefit from utilizing Q
tree data structures to accelerate their workloads

Showed how open-source hardware can be leveraged to

accelerate a specific class of tree algorithms, which we call
traverse-compute O O O @ O O O @

Evaluated open-source heterogeneous architecture called Duet,
using a recently published open-source framework and
benchmark suite Redwood and Grove

w/ 9 pragmatic traverse-compute applications

Achieved
13.53x highest speedup

6.43x geomean speedup

Insight: Traverse-compute workload has natural heterogeneous
decompositions on modern shared memory system-on-chips \

/

| III))))I

Motivation: Accelerating Computations at Edge

Edge computing are getting popular ...

But they has constraints
° e.g., energy or latency requirement

Application of edge computing
> Surveillance cameras
> Autonomous vehicles
> Mobile gaming

)~

|

i

|

Motivation: Accelerating Computations at Edge

Edge computing are getting popular ...

But they has constraints
° e.g., energy or latency requirement

Application of edge computing
> Surveillance cameras
> Autonomous vehicles

> Mobile gaming

Modern edge devices are becoming increasingly

heterogeneous
- w/ specialized Processing Units (PUs) (

We need to efficiently utilize these available system resources | y))]]MJ{/

Emm;Wang
@Harvard . ‘
| .+ DDR logic r‘__',_j“

= What do we mean by
resources?

system cache
slices (x4) GPU cores (x4)
and shared logic

Neural Engine
(cores x8)

: ‘Big cores (x2)

little cores (x4)

DDR logic

From David Brooks lab at Harvard:) |

https://visiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis | ”_(,)\\ f \
Ml
(ﬂ rl

Emmé—Wang

|@Harvard .+ DDR logic U

* = What do we mean by
resources?

°E.g., less than 20% of the die area of
an iPhone contains the CPU

*The rest contains specialize
fisiom pache (T 8 Programmable Accelerating PUs (PAPU)
S - c.g., integrated GPUs, FPGAs

o CEHESRNRsesess” * Interconnected to a shared memory
ewal Engne BTN M Ll e e hierarchy

*Shared Memory
et S Heterogeneous System |
DDR logic HSAUGly W : (SMHS) enables efficient (§
o s - - - — . }

....

From David Brooks lab at Harvard: communication between

https://visiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis P U S /

i

Il

‘1

Wi

Emma Wang
I@Harvard +'DDR logic

system cache
slices (x4) GPU cores (x4)

and shared logic

Neural Engine
(cores x8)

DDR logic R DDR logid
qRUI [naal

From David Brooks lab at Harvard:

What do we mean by

resources?

°E.g., less than 20% of the die area of
an iPhone contains the CPU

*The rest contains specialize
Programmable Accelerating PUs (PAPU)
* e.g., integrated GPUs, FPGAs
* Interconnected to a shared memory
hierarchy
*Shared Memory
Heterogeneous System
(SMHS) enables efficient
communication between

https://visiarch.eecs.harvard.edu/researq

How can workloads efficiently utilize each PU? |

/

N>

|

Processing Units (PU) Characteristics

CPU Programmable Accelerating PUs (PAPU)

Features: High- GPU FPGA

performance cores, Features: SIMT (Single Features: Specialized tasks,
reorder buffer, load store Instruction, Multiple Pipeline parallelism
queue, ... Threads) execution,
coalesced memory access

Close to ASIC performance

Latency optimized - Orders-of-magnitude harder

Throughput optimized to program

- Limited throughput

- Warp Divergence

Good for irregular programs

Good for accelerating
compute-intense programs

N

TreeS on th e edge * Edge applications need to process a large

amount of data
* They can utilize tree structures and traversals

to perform edge tasks
* E.g., octree, k-dimensional tree

Input data Spatial Partition

Trees on th e edge * Edge applications need to process a large

amount of data
* They can utilize tree structures and traversals
to perform edge tasks
* E.g., octree, k-dimensional tree
 The dataset are organized into a hierarchical
tree structure, allowing data to be efficiently
searched from O(n) to O(log n)

Input data Spatial Partition

Traverse-Compute Workloads

‘Repeatedly traversing a sparse tree structure

Root

*Each traversal consists of
Node

N * Indirect memory loads at branch nodes (Red
Irregular Memory N box)

A h
ccesses at branch nodes - Dense data to be processed at leaf nodes

visited ()

* Computing pairwise interactions (e.g., Euclidean
distance)

* Reductions (e.g., sum, min)

*Example workloads:
/ \ * Barnes-hut Algorithm (octree)

/ \

- - E @ e | Foa
A

Dense Computations at leaf nodes

Decomposing Traverse Compute Workloads

Tree applications can benefit from fine-
grained acceleration

CPU traverses the tree

\\
LE© :
PAPUs are good at accelerating regular,

compute-intense operations Computations at leaf
nodes are offloaded to the
A natural heterogeneous approach is to accelerator d”

CPUs are good at handling dynamic control
flows and tolerating indirect memory loads

Accelerating Traverse-compute workloads on SMHSs

*The tree can be parameterized by how many data points exist on the leaf nodes.

\\ Can be merged into Larger node sizes tradeoffs Heterogeneous Approach

\ \

\ + Larger chunk of contiguous
data
\\ \\ CPU traverses the tree
@ + Less irregular accesses in \
@ tree traversals \

6 data points @ @
@ - Potentially unneeded

. : computation o
3 data points 3 data points Computation is offloaded

to accelerator

/9
5

(I

Accelerating Traverse-compute workloads on SMHSs

*The tree can be parameterized by how many data points exist on the leaf nodes.

\ Can be merged into

\
\ \
\
\

\

QL@

G

3 data points

G

3 data points

Execution Timeline

6 data points

Larger node sizes tradeoffs Heterogeneous Approach

+ Larger chunk of contiguous
data

CPU traverses the tree

\
Computation is offloaded
> to accelerator

+ Less irregular accesses in
tree traversals

- Potentially unneeded
computation

CPU
PAPU

CPU
PAPU

f Components of task that best
suited to CPU /
w/ Redwood Components of task that best "
(This work) suited to PAPU (§ =
Flexible & Specialize Heterogeneous L 1 "\I{m\m\{%
Decomposition mmmmm |

his work: Redwood Overview

Traverse-heavy config

Intel i5-10210U CPU @ 1.60GHz

Redwood APIs

Intel UHD Graphics 620
void Traverse (Node node, Point q) ¢ -4 nodes visited
t © © © @ © ©-4computations in nodes Nearest Neighbor 3.36x faster
if (nodeIsLeat)) at optimal leaf node size 256
result += Compute(node.data, q); 2@ p

else
for(child in node.children)
Traverse(child, q):

Compute-heavy config L RISC-V TimingSimple CPU
PAPU |

: w/ Duet eFPGA
- 2 nodes visited CPU
Traverse-Comput .
rav;rsfkloc;zi;fu ¢ Flexible - 9 computations in nodes Nearest Neighbor 13.53x faster
' Decomposition 2> at optimal leaf node size 512
Users implement tree Target systems w/ different
applications using our APIs CPU/PAPU throughputs

Yanwen 98.3%

Intel SoCs Nvidia SoCs

KNN based Facial recognition

"

—

Redwood: APIs and Data Structures

CPU Sequential Code (NN) w/ Redwood API
tree = KDTree() _ Lo
nin_dist = 99999.9999 Imp/emented tree = KDTree(leaf size=32)
def traverse(node, q): using:

if is_leaf(node): REdW00dR SRR RE N

Reduce Leaf Node def traverse(node, q):

for i in range(node.leaf size): if is_leaf(node):]
e)

kernel_func(q, node.data[i]) redwood_compute_leaf(node.data()

else:
dist = compute_dist(q, node.data[9])
min_dist = m1n(m1n_d1§t, dist) min_dist = min(min_dist, dist)
traverse(node.leaf child) .
. . . traverse(node.leaf child)
if check other side(dist): . . .
. . if check other_side(dist):
traverse(node.right_child) traverse(node.right childT

else:
dist = compute dist(qg, node.data[@])

Redwood Heterogenous Optimizations
Q

Flexible Leaf Size Configuration Q
 Adapt to various heterogeneous ‘ ‘
systems with different relative O OO O O OO O

throughput between the CPU and the s
PAPU parse Dense

Traverse Heavy Compute Heavy

Execution Timeline >
CPU

PAPU

' Components of task that best
CPU .
imal fi , suited to CPU /
(Optimal configuration) Components of task that best | A

””/m'n‘m | mlim*

Redwood Heterogenous Optimizations

Traverser Runtime time=0 time=1 ime=2 time=3 fime=4
- Allow a single CPU thread to ~ CPU ==|_ >ttt
execute many traversals PAPU sssssssnus

concurrently to avoid
stalling when a traversal
depends on a PAPU
accelerated value

Start t continue when result ready

Redwood Heterogenous Optimizations

Traverser Runtime time =0 time =1 time=2 time=3 time = 4
- Allow a single CPU thread to CPU == Startt Start t Resume t | Resume t’]- ---------
execute many traversals PAPU ssssssssus Process A | Process C | Process B I Process D]- .

concurrently to avoid

stalling when a traversal fime = 1 time = 2

depends on a PAPU -~
accelerated value l\RfI’_OB\
* Lightweight i L 'l:l\\
Coroutine .] BN
* Suspend oo R
(= * Resume (\' LA\:) e G l\ (_; /\
il '".),\,\\;;\K,AW Start t’ Resume t
Wi

Grove: Benchmark Suite for SMIHS

Grove contains 9 traverse-compute workloads

Can be found in many applications Tree Structures Computation Patterns

o Astrophysics > Octree/quadtree > Aggregation (sum)

> Facial recognition > k-d tree > Reduction (e.g., min)

> Anomaly detection > Sorting

o Qutlier detection , _ ,

- Particle simulation Three Algorithms Various Distance Metrics
> Barnes Hut > Euclidean
> Nearest Neighbor > Manhattan

> k Nearest Neighbor o Chebyshev(

\:\4

il mﬁﬂ\\

Evaluating an Open-Source SMHS: Duet

Duet. | ™ Duet
° A tightly-integrated, cache-coherent CPU- L2$ fr 1228 auet (This Work)
FPGA architecture (Core) Shardf | Core]l Logic-rich

——— NoC [—— | eFPGA
> Enables fine-grained transparent data i i . 9l
sharing between the processors and the (75 Li‘ﬂ““ 125 e
eFPGA-emulated accelerators (Core LSharle (core] |

> Simulated in using Gem5-Duet extension

Platform Backend CPU Accelerator Accelerator
Frequency frequency

Duet HLS RISC-V 1.5GHz Duet 333MHz

(simulated in TimingSimple eFPGA
gemb5) CPU

Configuration (

[1] Li, Ang, August Ning, and David Wentzlaff. HPCA 23/’}%",%“’”")

Grove Results Overview

Leaf Size CPU Leaf Size w/ Duet Ratio Avg Speedup B BH Gra B NN Euc Bl KNN Euc
BH 3.33 512 153.6 6.9% B BH Gau DB NNMan [KNN Man
NN 26.67 42667 16 11.2¢ [0 BHTop [] NNChe [=1 KNN Che
KNN 26.67 128 4.8 3.64x
Average 19 355 18.8 6.43x
O 10
We swept through the leaf node sizes to ﬁ
find the optimal configuration that yield the '_% c
best performance,
> Average 18x larger leaf node size than the CPU 0. t—
BH NN
Speedups Duet
highest 13.53x Speedups of the best heterogeneous
fi i . th h -
geomean 6.43x con |gurat|on. vs. t e best homogeneous N
configuration of Grove. R

. b%

T

We compared Duet to GPU-based SMHSs

Kernel Submission Cost Nvidia Jetson Nano (CUDA) Batch Size

> Traverse-compute applications frequently ;:“ 0. I Launching Overhead
invoke small kernels S [Synchronization

> Useful works are shown in Green “u:;’ .. B CPU Traversals

> Orange/Blue are overheads *'E;

> Low-cost kernel submission is important for ~ © N
accelerating applications on edge devices b=32 b=64 b=128 b=256 b=512 b=1024

. Batching multiple GPU kernels into
- Duet has minimal offload overhead a single/larger kernel helps

amortizing kernel launching
overhead on GPU-based systems

| T &
L

T

Conclusion

v"We present how open-source hardware design can be
used to accelerate a pragmatic class of applications

v"We show that the Duet system can accelerate a suite of
traverse-compute applications by up to 13.5x with a
geomean of 6.43x

v"We highlight the use of Grove, an open-source benchmark)
suite of traverse-compute workloads that utilize fine k- N
grained synchronization across PUs, and thus can provide a SN AL UL SANACRIL O SANT G
way for architecture researchers to evaluate their T
heterogeneous designs

UC Santa Cruz Redwood Grove

Team ® O
Yanwen Xu yxu83@ucsc.edu .‘. Open-Source Repo | </>
Ang Li angl@princton.edu Redwood & Grove at
Tyler Sorensen tyler.sorensen@ucsc.edu https://github.com/xuyanwen2012/redwood-rt

mailto:yxu83@ucsc.edu
mailto:angl@princton.edu
mailto:tyler.sorensen@ucsc.edu
https://github.com/xuyanwen2012/redwood-rt

	Default Section
	Diapositiva 1: Evaluating Shared Memory Heterogeneous Systems Using Traverse-compute Workloads

	Oscar
	Diapositiva 2: Highlights
	Diapositiva 3: Motivation: Accelerating Computations at Edge
	Diapositiva 4: Motivation: Accelerating Computations at Edge
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9: Trees on the edge
	Diapositiva 10: Trees on the edge
	Diapositiva 11: Traverse-Compute Workloads
	Diapositiva 12: Decomposing Traverse Compute Workloads
	Diapositiva 13
	Diapositiva 14

	Version 2
	Diapositiva 15: This work: Redwood Overview
	Diapositiva 16: Redwood: APIs and Data Structures
	Diapositiva 17: Redwood Heterogenous Optimizations
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20: Grove: Benchmark Suite for SMHS
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23: We compared Duet to GPU-based SMHSs
	Diapositiva 24: Conclusion

